You can easily create AI workflows with Anakin AI without any coding knowledge. Connect to LLM APIs such as: Deepseek R1, GPT-4, Claude 3.5 Sonnet, Uncensored Dolphin-Mixtral, FLUX for AI Image Generation, Minimax for AI Video and Audio generation.... into One Workflow!

Understanding the Model Architecture of DeepSex
DeepSex 34B represents a specialized variant of DeepSeek's R1 architecture optimized for creative NSFW content generation. Built upon the Yi-34B foundation, this model incorporates several key enhancements:
- Extended Context Window: 64K token processing capacity for long-form narratives
- Dynamic Temperature Scaling: Automatic adjustment between 0.4-1.2 based on context complexity
- Multi-Character Tracking: Simultaneous management of 8+ distinct personas
- Erotic Lexicon: 12,000+ NSFW-specific tokens trained on curated literature
The model's GGUF format enables flexible deployment across various hardware configurations while maintaining near-original quality through advanced quantization techniques.
Hardware Requirements for Running DeepSex Locally
Minimum Specifications
- GPU: NVIDIA RTX 3090 (24GB VRAM)
- RAM: 32GB DDR4 (3600MHz+ recommended)
- Storage: NVMe SSD with 40GB free space
- CPU: Intel i7-12700K/Ryzen 7 5800X (8 physical cores)
Ideal Configuration
- GPU: Dual RTX 4090 (24GB VRAM each) with NVLink
- RAM: 64GB DDR5 (5200MHz CL36)
- Storage: RAID 0 NVMe array (2x2TB)
- Cooling: Liquid cooling system for sustained inference sessions
Performance Metrics
Component | Q4_K_M Load | Q6_K Load | FP16 Load |
---|---|---|---|
VRAM Utilization | 19-23GB | 27-31GB | 44GB+ |
Tokens/Second | 14-18 t/s | 9-12 t/s | 4-7 t/s |
Context Warmup | 8-12 sec | 15-20 sec | 25-30 sec |
How to Install DeepSex Locally: A Step by Step Guide
Method 1: LM Studio Simplified Setup
Download LM Studio (Windows/macOS/Linux)
Create dedicated folder: mkdir ~/DeepSex34B
Search model hub for "TheBloke/deepsex-34b-GGUF"
Download deepsex-34b.Q4_K_M.gguf
Configure engine settings:
- GPU Layers: 35 (Nvidia) / 20 (AMD)
- Context Window: 8192 tokens
- Temperature: 0.72
- Repetition Penalty: 1.18
Test with prompt:
[System: Write explicit romantic encounter between two consenting adults in a tropical setting]
Method 2: llama.cpp Advanced Implementation
Install prerequisites:
sudo apt install build-essential libopenblas-dev nvidia-cuda-toolkit
Compile with CUDA support:
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp && make clean && LLAMA_CUBLAS=1 make -j
Convert model for optimal performance:
python3 convert.py --outtype q4_0 TheBloke/deepsex-34b-GGUF
Launch inference server:
./server -m models/deepsex-34b.Q4_K_M.gguf --port 6589 --ctx-size 4096 --n-gpu-layers 35 --parallel 4
Method 3: SillyTavern + KoboldCpp UI
Install SillyTavern:
git clone https://github.com/SillyTavern/SillyTavern
cd SillyTavern && ./start.sh
Configure KoboldCpp backend:
koboldcpp.exe --usecublas --gpulayers 35 --contextsize 6144 --stream deepsex-34b.Q4_K_M.gguf
Connect via API:
- Local IP:
127.0.0.1:5001
- API Key:
ST-DeepSex34B
Advanced Optimization Techniques
Memory Management
- Layer Offloading: Balance GPU/CPU load using
--gpulayers 28
(start at 70% of max) - Quantization Mixing: Combine Q3_K_S for back layers + Q4_K_M for attention
- Swap Compression: Enable
--compress_pos_emb 2
for 50% context memory reduction
Speed Enhancements
Flash Attention v2:
make clean && LLAMA_CUBLAS=1 make -j USE_FLASH_ATTENTION=1
Batch Processing:
./main -m deepsex-34b.Q4_K_M.gguf -b 512 -n 1024 --batch-size 64
CUDA Graph Capture:
export GGML_CUDA_GRAPHS=1
NSFW Prompt Engineering for DeepSex
Effective Templates
- Detailed Scenario Setup:
[System: You are an erotic fiction writer specializing in consensual adult relationships. Describe a passionate encounter between [Character A] and [Character B] in [Setting]. Focus on sensory details and emotional progression.]
- Dynamic Roleplay:
[Persona: Lily, 28, confident yoga instructor]
[User: Mark, 32, shy architect]
[Scene: Private after-hours studio session turns intimate]
- Sensory Focus:
Use vivid descriptions of:
- Tactile sensations (textures, temperatures)
- Auditory cues (breathing, environmental sounds)
- Olfactory elements (scents, perfumes)
- Visual details (lighting, body language)
Content Controls
Safety Layer Injection:
safety_filter = [
"non-consensual",
"underage",
"illegal substances",
"violence"
]
Output Moderation:
./main --logit_bias 17823=-100 # Bans specific token IDs
Privacy & Security Measures
Local Network Setup
Create isolated VLAN:
sudo iptables -A INPUT -p tcp --dport 6589 -j DROP
sudo iptables -I INPUT -s 192.168.1.0/24 -p tcp --dport 6589 -j ACCEPT
Enable TLS encryption:
openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365
Memory Protection:
sudo sysctl -w vm.memory_encryption=1
Data Sanitization
Automatic Log Wiping:
journalctl --vacuum-time=1h
Secure Model Storage:
veracrypt -c /dev/sdb --filesystem=exfat --encryption=aes-twofish-serpent
Troubleshooting Deep Dive
CUDA Errors
Symptom: CUDA error 700: Out of memory
- Solutions:
- Enable memory pinning:
export PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128
- Layer redistribution:
--gpulayers 28 --mmap
- Mixed precision:
--tensor_split 24,24
Quality Degradation
Issue: Repetitive outputs
- Fix sequence:
- Adjust repetition penalty:
--repeat_penalty 1.15
- Enable mirostat sampling:
--mirostat 2
- Increase temperature variance:
--temp 0.8 --temp_inc 0.02
Ethical Operation Framework
Content Boundaries
Implement three-layer filtering:
- Pre-prompt ethical guidelines
- Real-time content scanning
- Post-generation audit
Consent Simulation:
if "consent" not in scenario:
inject_prompt("Establish verbal consent between characters")
Age Verification System:
while True:
age = input("Confirm all characters are 18+ [Y/N]: ")
if age.upper() == "Y":
break
Legal Compliance
- Regional Law Adherence:
- US: 18 U.S.C. § 2257 compliance checks
- EU: GDPR Article 9 safeguards
- ASIA: Local decency laws integration
Advanced Customization
Model Merging
Create hybrid variants using:
python3 merge.py deepsex-34b.Q4_K_M.gguf mythomax-13b.Q4_K_M.gguf --alpha 0.65
LoRA Adaptation
Prepare dataset:
nsfw_dataset = load_dataset("your_custom_scenarios.json")
Train adapter:
python3 finetune.py --lora_r 64 --lora_alpha 128 --model deepsex-34b
Apply during inference:
--lora custom_lora.bin
This guide provides technical depth while maintaining practical usability. Regular maintenance (update drivers monthly, monitor VRAM temps) ensures optimal performance. The model's unique architecture allows creative exploration within ethical boundaries when properly configured.